Eötvös Loránd Ágoston 1848-ban született Budán, a Svábhegyen, majd a krisztinavárosi római katolikus plébánián keresztelték meg. Édesapja báró Eötvös József író, politikus, vallás- és közoktatásügyi miniszter, édesanyja Rosty Ágnes (1825–1913) volt.

Középiskoláit 1857-től a pesti piaristáknál, illetve magántanulóként végezte. Miután 1865-ben érettségizett, a pályaválasztás keresztútja elé került. Nevelésére Eötvös József Vécsey Tamást, a római jog neves művelőjét, később nemzetközi hírnévvel rendelkező professzorát kérte fel. Apja ösztönzésére beiratkozott ugyan a jogi fakultásra, de Petzval Ottónál matematikát is hallgatott, majd Krenner József vezetése mellett az ásvány- és kőzettannal ismerkedett, Than Károly laboratóriumában pedig kémiai oktatásban részesült. A természettudományok bűvkörében érdeklődése mindinkább polarizálódott, és lassan érlelődni kezdett lelkében a gondolat, hogy a párhuzamosan folytatott kétirányú képzés nem célravezető, végül is választania kellett a jogi, és a hajlamainak, érdeklődési körének jobban megfelelő természettudományi tanulmányok között. A végső döntésre csak a második év után, 1867-ben került sor, amikor a kiegyezés után apja újból elvállalta az 1848-as első felelős magyar kormányban már betöltött vallás- és közoktatásügyi miniszteri tárcát. Ekkor Loránd beiratkozott a Heidelbergi Egyetemre, ahol akkoriban a természettudományok három világhírűvé vált tudósa, Gustav Robert Kirchhoff, Hermann Ludwig von Helmholtz és Robert Wilhelm Bunsen egy időben tanított. Eötvös Kirchhoffnak mind kísérleti, mind elméleti előadásait buzgón látogatta, Helmholtznál a hangtan és fénytan fiziológiai aspektusait tanulmányozta, Bunsen laboratóriumában pedig kémiai analíziseket végzett. Königsbergben is tanult, de itt csak egy félévet töltött el, mert túl elvontnak találta. Csatlakozni akart Petermann német földrajztudós Spitzbergákra induló expedíciójához, de erről apjának sikerült lebeszélnie.

1870-ben summa cum laude, azaz színjeles eredménnyel doktorált. Erről apjának a következőket írta:

„…E fokozatot nemigen osztogatják. Ebben a félévben kívülem még csak egy jelöltnek adatott, s kultuszminiszteri örömöd telhetik abban, hogy az is magyar volt… neve König Gyula, győri születésű matematikus.”

Hazatérve, az egyetem laboratóriumában kísérletekbe kezdett, melyek a doktori fokozat megszerzésére végzett kutatások folytatásai voltak. Ezeket az eredményeket nyújtotta be 1871 márciusában magántanári képesítése iránti kérelmében a budapesti bölcsészeti karhoz. A kérelmet a Petzval Ottó, Jedlik Ányos és Than Károly professzorokból álló bizottság pozitívan értékelte és megkapta a magántanári kinevezést. Első előadására inkább azért gyűlt össze a közönség, hogy láthassa a bárót, aki előad az egyetemen. 1872-től nyilvános rendes tanár, 1874-től kísérleti fizikát is előadhat. 1875-ben laboratóriumot kapott az egyetemen, ahol kísérleteit végezte. 1878-ban pedig, Jedlik Ányos nyugalomba vonulása után, a kísérleti fizikai tanszék vezetőjének nevezték ki, és megbízást kapott az elméleti és kísérleti fizikai tanszék összevonásával létrehozott Fizikai Intézet igazgatói teendőinek ellátására. 1873-ban, 25 évesen megválasztották a Magyar Tudományos Akadémia levelező, 1883-ban pedig rendes tagjává. 1889 és 1905 között ő volt az Akadémia elnöke.

Heidelbergből való hazatérése után elkezdődött közéleti szereplése is. Bekapcsolódott a Természettudományi Társulat munkájába. 1891-ben többedmagával megalapította a Mathematikai és Physikai Társulatot és Mathematikai és Physikai Lapok címen folyóiratot indít el. 1894. június 10. és 1895. január 15. között vallás- és közoktatási miniszter volt. 1905-ben lemondott akadémiai elnöki posztjáról, de tudományos tevékenységét az egyetemen a haláláig folytatta. A Magyar Turista Egyesület elnöke volt. Az egyetemre lóháton járt be. Általános tanulmányi verseny helyett egyes tantárgyakból, matematikából és fizikából szervezett versenyeket, az elsőt 1894-ben.

A magyar Kárpátegyesület is elnökévé választotta. Bejárta az országot, és külföldön is járt; az Alpesek vidékén és Tirolban új csúcsokat is meghódított, melyeket korábban mászhatatlannak tekintettek. Alig 18 évesen feljutott a Monte Rosára (4638 m), ami a második legmagasabb hegycsúcs Európában. Dél- Tirolban 1902-ben az egyik 2837 m magas csúcsot róla nevezték el. Utazásait, expedícióit fényképeken örökítette meg. Népszerűsítette is a természetjárást, de nyári hegymászásai közben is figyelemmel kísérte a kutatómunkát.

Élete végén súlyos betegség gyötörte, de folytatta tudományos munkásságát, a terepmunkát is figyelemmel kísérte. Utolsó cikkét nem sokkal halála előtt adta nyomdába. Az 1919. április 8-án elhunyt nagy tudóst és nagy embert április 11-én temették el. A Magyar Nemzeti Múzeumban ravatalozták fel, innen kísérte a gyászmenet a Kerepesi úti temetőbe.

Házassága és gyermekei

1875. július 28-án vette feleségül Marienbadban a szombathelyi születésű polgári származású Horvát Gizellát (1853–1919), Horvát Boldizsárnak, az Andrássy-kormány igazságügyi miniszterének, és Schenk Klárának (1824–1872) a lányát. Három leánygyermekük született, ám csak kettejük érte meg a felnőttkort, de ők sem mentek férjhez.

  • Jolán (1877–1879)
  • Rolanda (1878–1952)
  • Ilona (1880–1945)

Tudományos eredmények

Eötvös 1875-ben kezdte meg kísérleteit az egyetemtől kapott laboratóriumban. Új kutatási módszereket is kidolgozott. 1883-ban részt vett a Párizsban az elektromosságról tartott nemzetközi kongresszuson. Cikkei számos témában jelentek meg a Vasárnapi Újságban, a Természettudományi Közlönyben, a Műegyetemi Lapokban, a Mathem. és Term. Értesítőben, az Annalen der Physik u. Chemieben és a Mathematikai és Physikai Lapokban. Műszereit szigorúan tudományos alapon, elméleti megfontolások alapján fejlesztette ki.

A gravitációs abszorpció az a kérdés, hogy két test egymásra való gravitációját befolyásolhatja-e egy harmadik, közéjük került test. Eötvös ezzel a problémával is foglalkozott.

 

Eötvös-inga (torziós inga)

eotvos-ingaasaghegyimuzeumban.jpg

A Ság hegy, Eötvös 1891-es méréseinek helyszíne. A hegy eredetileg a Badacsonyhoz hasonlított, de különösen szabályos csonka kúp alakú bazaltsapkával. Így könnyen kiszámítható volt az ingára gyakorolt várható hatás (képeslap 1911–12-ből, a bazaltbánya megnyitása után)

A gravitáció felé az 1880-as években fordult az érdeklődése. A gravitációs tér térbeli változásának mérésére megszerkesztette világhírűvé vált torziós ingáját, mely a Cavendish-féle torziós inga módosítása. Eötvös gravitációs méréseiben kétféle alakú torziós ingát használt: Az első alak: a torziós szálon függő vízszintes rúd mindkét végére platinasúly van erősítve, így a rúd végein elhelyezkedő tömegek egyenlő magasságban helyezkednek el (görbületi variométer). A görbületi variométer a Coulomb-mérleg pontosabbá és stabillá tett változata, amivel a nehézségi erő potenciáljának deriváltjait lehet meghatározni. Ebből levezethető a potenciál szintfelület görbülete. A második alak: a vízszintes rúd egyik végére ugyancsak platinasúly van erősítve, másik végén vékony szálra erősített platinahenger lóg alá, így a rúd végein levő tömegek különböző magasságban vannak, amivel a horizontális gradienseket is meg lehet határozni (horizontális variométer). A horizontális variométer – Eötvös fő műve – a tulajdonképpeni Eötvös-inga. A műszert tokkal védte, mely végső változatában három rétegből állt, ezzel az elektromágneses hatásokat védte ki és a szélmozgásoktól is óvta az eszközt.

Horizontális variométer, az első Eötvös-inga, 1890-ben készült el. A műszer elve igen egyszerű, ha ugyanis a két tömegre ható vonzóerő nem teljesen egyenlő, egymástól nagyságban vagy irányban eltér, akkor a rúd a vízszintes síkban elfordul, és a felfüggesztő platina szál megcsavarodik. A megcsavart szál rugalmassága a rudat eredeti helyzetébe igyekszik visszafordítani. A rúd tehát ott fog megállni, ahol az egymással szemben működő kitérítő erő és rugalmas visszatérítő erő forgatónyomatéka egymással egyenlő.

Műszeréről Eötvös maga a következőket mondja:

"Egyszerű egyenes vessző az az eszköz, melyet én használtam, végein különösen megterhelve és fémtokba zárva, hogy ne zavarja se a levegő háborgása, se a hideg és meleg váltakozása. E vesszőre minden tömeg a közelben és a távolban kifejti irányító hatását, de a drót, melyre fel van függesztve, e hatásnak ellenáll és ellenállva megcsavarodik, e csavarodásával a reá ható erőknek biztos mértéket adván. A Coulomb-féle mérleg különös alakban, annyi az egész. Egyszerű, mint Hamlet fuvolája, csak játszani kell tudni rajta, és miként abból a zenész gyönyörködtető változásokat tud kicsalni, úgy ebből a fizikus, a maga nem kisebb gyönyörűségére, kiolvashatja a nehézségnek legfinomabb változásait. Ily módon a földkéreg oly mélységeibe pillanthatunk be, ahová szemünk nem hatolhat és fúróink el nem érnek."

saghegy1911.jpg

Eötvös-törvény (kapillaritás)

Az 1870-es évek elejétől két évtizeden át a kapillaritás jelenségével foglalkozott. A felületi feszültség mérésére új módszert dolgozott ki, az Eötvös-féle reflexiós módszert. 1875-ben laboratóriumot kapott az egyetemen, ahol kísérleteit végezte. Elméleti úton felismerte a folyadékok különböző hőmérsékleten mért felületi feszültsége és molekulasúlya közötti összefüggést, ami az Eötvös-féle törvényként lett ismeretes.